Similar Right Triangles

Section 9.3

Geometric Mean

The geometric mean of two positive numbers a and b is the positive number x such that:

$$
\frac{a}{x}=\frac{x}{b}
$$

Find the geometric mean for the following \#'s:

$$
\begin{aligned}
& \frac{4}{x}=\frac{x}{9} 3 \text { and } \frac{3}{x}=\frac{x}{15} \\
& 4 \text { and } 9 x^{2}=36^{9} 3 \text { and } 15 \\
& 2 \text { and } 10 \\
& \frac{4}{x}=\frac{x}{9} \\
& \frac{3}{x}=\frac{x}{15} \\
& x^{2}=36 \\
& \sqrt{x^{2}}=\sqrt{36} \\
& \sqrt{x^{2}}=\sqrt{45} \\
& =\sqrt{95} \\
& \frac{2}{x}=\frac{x}{10} \\
& x^{2}=20 \\
& \sqrt{x^{2}}=\sqrt{20} \\
& =\sqrt{45} \\
& x=3 \sqrt{5} \\
& x=2 \sqrt{5}
\end{aligned}
$$

Similar Right Triangles

In a right triangle, if an altitude is drawn from the right angle to the hypotenuse, two triangles are formed that are similar to the original.

\square

Similar Right Triangles

Write the similarity statement that relates the three triangles.

Find the value of each variable.

$$
\begin{aligned}
& \frac{3}{y}=\frac{y}{11} \\
& y=\sqrt{33}
\end{aligned}
$$

$$
\frac{x}{8}=\frac{3}{x} \quad \begin{aligned}
& x^{2}=24 \\
& x=\sqrt{24} \\
& 2 \sqrt{6}
\end{aligned}
$$

Find the value of each variable.

Finish Similar Right Triangles Notes and WS p1

Geometric Mean

Lesson 9.3 Day 2

Geometric Mean

The altitude ${ }^{2}$ is the geometric mean between the segments of the hypotenuse.
$a b t^{2}=\operatorname{sog} 1(\operatorname{seg} 2)$

Geometric Mean

The altitude is the geometric mean between the segments of the hypotenuse.

Geometric Mean

The altitude is the geometric mean between the segments of the hypotenuse.

Geometric Mean
The altitude is the geometric mean between the segments of the hypotenuse.

Geometric Mean

The leg is the geometric mean between the hypotenuse and the segment adjacent to the given leg.

$$
\operatorname{leg}^{2}=\stackrel{\operatorname{adj}}{\operatorname{sog}}(h y p)
$$

Geometric Mean

The leg is the geometric mean between the hypotenuse and the segment adjacent to the given leg.

Geometric Mean

The leg is the geometric mean between the hypotenuse and the segment adjacent to the given leg.

Geometric Mean

The leg is the geometric mean between the hypotenuse and the segment adjacent to the given leg.

Geometric Mean

The leg is the geometric mean between the hypotenuse and the segment adjacent to the given leg.

Finish p 2 of Geometric Mean Notes and WS

