Equations of Parallel and Perpendicular Lines

Lesson 3.5

Bell Work: Student Journal p.84: 1, 2, 5, 6

In Exercises 1–4, find the distance from point A to \overline{BC} .

1.

2.

$$Q = \sqrt{(x^{2} - x^{1})^{2} + (-3.6)^{2}}$$

$$\sqrt{(-1+3)^{2} + (-3.6)^{2}}$$

$$\sqrt{(-1+3)^{2} + (-3.6)^{2}}$$

Which lines, if any, must be parallel? Justify your reasoning.

€

If your All About Slope Foldable is not filled out, sign up for a time to come in and do so.

Slopes of ∥ and ⊥ Lines

$$y = \frac{2}{5}x + 6$$

In a coordinate plane, two non-vertical lines are parallel if and only if they have the same slope.

In a coordinate plane, two non-vertical lines are perpendicular if and only if the product of their slopes is

Desmos Introduction

Open Safari and go to Desmos.com.

Press Launch Calculator

Type $y = \frac{2}{5}x + 6$ (use the ÷ symbol to write 2/5).

Press

Now graph 2 other lines parallel to the first.

Next graph 2 lines perpendicular to the first.

Desmos Activity

Go to **student.desmos.com**.

Enter the class code, press **Submit**.

Enter you and your partner's names.

You will get a participation grade on this.

Welcome!

Sign in to come back to your work later:

Create Account

OΓ

Sign In

Construct a square.

1 of 5

Construct a Square Summary

Insights?

Struggles?

Lesson 3.5 Day 2

Bell Work

- Find the slope of the line that's parallel to y = 2x 7.
- Find the slope of the line that's parallel to 9x + 3y = 6.

$$M = -3$$
 $y = -3 \times +2$
 $y = -9 \times +6$
 $y = -3 \times +2$
 $y = -9 \times +6$
 $y = -3 \times +2$

Find the slope of the line that's perpendicular to

$$4x - 5y = 12$$
 Slope y-int
 $-\frac{5y}{-5} = -\frac{4x+12}{-5}$ $y = \frac{4}{5}x + \frac{12}{5}$

Determine which of the lines are parallel and which of the lines are perpendicular.

Find the slope of the line passing through (-11, 4) and (-7, -6)

$$\frac{rise}{run} \rightarrow \frac{\Delta y}{\Delta x}$$

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

$$(1, 2) (3, 4)$$

$$m = \frac{(4 - 2)}{(3 - 1)} = \frac{2}{2} = 1$$

Find the slope of 2x + 3y = 18

$$-3x -2x + 18$$

$$+3y = -2x + 18$$

$$y = -3x + 6$$

$$y = -3x +$$

Write an equation of a line passing through (4, -3) with slope = -2.

Find an equation of a line with slope -3 passing through (-1, 5).

$$y = mx + b$$

 $5 = -3(-1) + b$
 $5 = 3 + b$
 $2 = b$

Find an equation of a line through (-2, 7) with slope of -5.

y = -3x + 2

$$y = m(x - x_1) + y_1$$

$$y = -5(x - -2) + 7$$

$$y = -5(x + 2) + 7$$

$$y = -5x - 10 + 7$$

$$y = -5x - 3$$

$$y = m \times 4b$$

$$y = -2x + 5$$

$$-3 = -2(4) + 6$$

$$-3 = -8 + 6$$

$$-3 = -8 + 6$$

$$y = m(x - x_1) + y_1$$

$$y = -2(x - 4) + -3$$

$$y = -2x + 8 - 3$$

$$y = -2x + 5$$

Write an equation of a line passing through (-3, 5) and (-2, 4) m_{-} y_{3-4}

$$y = m(x - x_1) + y_1$$

$$y = -1(x + x_3) + 5$$

$$y = -x - 3 + 5$$

$$y = -x + 2$$

Assignment – Finish the worksheet, review your notes.

Equations of Lines

Period

Find the slope of the line passing through the following points.

Find the slope of each line.

7.
$$y = \frac{2}{5}x + 4$$

10.
$$x = \frac{4}{3}y - 12$$

Write an equation of a line passing through the given point with the given slope.

14. (-4, -4),
$$m = \frac{5}{4}$$

15. (-4, -3), slope =
$$\frac{3}{2}$$

Write an equation of a line passing through the given points.

Lesson 3.5 Day 3 **Bell Work:** Student Journal p. 89: 3, 4

3. Which lines are parallel and which are perpendicular?

4. Tell whether the lines through the points are parallel, perpendicular or neither.

Line 1: (2, 0), (-2, 2)

Line 2: (1, -2), (4, 4)

Write an equation of a line passing through (-4, 6) that is parallel to y = 3x - 4.

$$y = mx + b$$
 $m = 3$
 $6 = 3(-4) + b$
 $6 = -12 + b$
 $18 = b$
 $y = 3x + 18$

Write an equation of a line passing through (-12, 6) that is perpendicular to $y = \frac{2}{3}x - 10$.

$$4 = mx+b$$
 $6 = -\frac{3}{2}(-12)+b$
 $-18 = -18$
 $-18 = -3$
 $4 = -\frac{3}{2}x-12$

$$M = -\frac{3}{3}$$

$$Y = -\frac{3}{3}(x + 12) + 6$$

$$Y = -\frac{3}{3}x - 18 + 6$$

$$Y = -\frac{3}{3}x - 12$$

Find the distance from the point (6, -2) to the

line
$$y = 2x - 4$$
.

 $y = -\frac{1}{2}(x - 6) + 2$
 $y = -\frac{1}{2}x + 3 - 2$
 $y = -\frac{1}{2}x + 1$
 $y = -\frac{1}{2}x + 1$

Find the distance from the point (0, 5) to the line y = -3x - 5.

Lesson 3.5 p. 160: 8-34 even, 43, 52-57