Zeros of Polynomial Functions

Section 2.5

Fundamental Theorem of Algebra

If $f(x)$ is a polynomial of degree n, where $n>0$, then f has at least one zero in the complex number system.

Linear Factorization Theorem

If $f(x)$ is a polynomial of degree n, where $n>0$, then $f(x)$ has $\cap \quad$ zeros and \qquad factors. (Not all will be unique. Remember multiplicity.)

If $f(x)$ has zeros $2,-1,4 i$, and $-4 i$, then write the linear factors of $f(x)$.

$$
(x-2)(x+1)(x-4 i)(x+4 i)
$$

Rational Zero Test

Solve $x^{3}+6 x-7=0$

If the polynomial $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+$ a_{0} has integer coefficients, every rational zero of f has the form p / q. where p is a factor of a_{0} and q is a factor of a_{n}. (factors of $7 / 1$ in the above example.)

Find the rational zeros of

$$
f(x)=x^{3}-7 x-6=0
$$

$$
x=-2,3,-1
$$

$$
\begin{array}{c:ccc}
-1) & 0 & -7 & -6 \\
-1 & -6 & 0 \\
& x^{2}-x-6 \\
& (x-3)(x+2)
\end{array}
$$

Find the rational zeros of $f(x)=3 x^{3}-20 x^{2}+23 x+10$

Conjugate Pairs

Complex Zeros travel together.
Let $f(x)$ be a polynomial function that has real coefficients. If $a+$ bi where $b \neq 0$ is a zero of the function, the conjugate a - bi will also be a zero of the function.

$$
\begin{aligned}
& \text { real }+ \text { imag. } \\
& a+b i \\
& 2 \pm 3 i
\end{aligned}
$$

Find a fourth degree polynomial with 0,1 , and i as zeros. -i

$$
\begin{gathered}
x(x-1)(x-1)(x+i) \\
x^{2}+x_{i}-x_{i}-i^{2} \\
\left(x^{2}-x\right)\left(x^{2}-1\right) \\
x^{4}+x^{2}-x^{3}-x \\
f^{\prime}(x)=x^{4}-x^{3}+x^{2}-x
\end{gathered}
$$

Find all the zeros of

$$
\begin{aligned}
& f(x)=x^{4}-4 x^{3}+12 x^{2}+4 x-13 \\
& \left.x^{2}-1 \quad \text { given } 2+3 i \text { is a zero } 2-3 i\right)^{ \pm 1} \\
& x^{2}-4 x+33 x^{4} 24 x^{3}+12 x^{2}+4 x-13(x-2-3 i)(x-2+3 i) \\
& \frac{-x^{4}+4 x^{3}+73 x^{2}}{-x^{2}+4 x-13} x^{2}-2 x+3 x i \\
& \frac{+x^{2}+4 x+43}{0}+\frac{-3 x-6 i}{2}+4 x+13 \\
& x^{2}-1=(x-1)(x+1)
\end{aligned}
$$

- Section 2.5 p. 164 \#s 19, 22, 30, 45, 47, 55, 59

